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This paper considers approximation of continuous functions on a compact metric
space by generalized rational functions for which the denominators have bounded
coefficients and are bounded below by a fixed positive function. This lower bound
alleviates numerical difficulties, and in some applications (e.g., digital filter design)
has a useful physical interpretation. A "zero in the convex hull" characterization of
best approximations is developed and used to prove uniqueness and de la Vallee
Poussin results. Examples are given to illustrate this theory and its differences with
the standard theory, where the denominators are merely required to be positive. A
modified differential correction algorithm is presented and is proved to always
converge at least linearly, and often quadratically.

1. INTRODUCTION

In this paper we consider approximation of continuous functions by
generalized rational functions whose denominators are required to be
bounded away from zero. This is in contrast to the standard theory, where
the denominators are only required to be positive. There are at least four
reasons for having this stronger requirement:

(1) Best approximations always exist.
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(2) Iterative procedures for computing rational approximatiOns may
experience numerical difficulties if the denominators of the rational functions
become very small.

(3) Even if a good rational approximation is found, it may not be very
useful if its denominator is too small at some point.

(4) There may be some physical advantage in being able to control
the denominator. For example, McCallig [6] used a version of the algorithm
described in this paper to compute approximations to the desired magnitude
squared response of a digital filter; control of the denominator of the rational
function amounts to control of the feedback gain of the resulting filter, which
allows one to progress smoothly from "fully recursive" filter designs to
nonrecursive designs, and to reduce sensitivity problems and hardware
requirements.

Formally, the situation we are considering is as follows. X is a compact
metric space, m and n are fixed positive integers, 5' and .2 are subspaces of
C[X] with bases {Op..., Om} and {'liP"" 'll1I}' respectively, and L is a strictly
positive continuous function on X (which is often a constant in practice).
Our family of approximating functions is then defined to be

gpL= {P/Q:P=PIOI + ... +PmOmE5',Q=ql'lll + ... + qll'llll E.2,

Q~L on X, Iqjl ~ 1 forj= 1,..., n}.

We note in passing that without the restrictions Iqjl ~ 1, the restriction
Q~ L would be no stronger than the more usual restriction Q>0" since it
could always be satisfied by multiplying P and Q by a sufficiently large
positive constant.

In order that gpL be nonempty, .2 must contain at least one strictly
positive function, so without loss of generality we will assume 'II I >°on X.
To insure gfL *- 0, and for other reasons which will be clearer later, we will
also assume maxXEX L(x) < minx EX 'III(X); this requirement is no restriction
in practice, since it can always be obtained by multiplying 'II I by a suitable
positive constant.

Given fE C[X), a best approximation to f is defined to be a function
R* E gfL such that Ilf- R*II ~ Ilf- R II for all R E gpL' where for g E C[X],
II gil = maxXEX Ig(x)l. The following theorem can be proved by standard
techniques.

THEOREM 1. If fE qX], then there exists a best approximation to f
from gpL'

In the remaining sections we will consider characterization of best approx
imations, uniqueness, de La Vallee Poussin results, and computation of
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best approximations by a modified differential correction algorithm. The
theory differs in some respects from the restricted range situation, where the
entire rational function rather than just the denominator is restricted.

Suppose fE C[X] and R* E .9fL , where R* =P*/Q* = (pfOt + ... +
p~Om)/(qflfll + ... +q:lfIn)' The following notation will be useful.

a(x) = sgn(f(x) - R*(x» Vx EX;

,9' +R*2 = {P+R*Q:PE g, QE .2};

X o = {x E X: If(x) - R*(x)1 = Ilf- R* II};
Yo = {yEX: Q*(y)=L(y)};

10 = {jE {l,...,n}:lqjl= l};

S = {a(x) x: x E Xo}U {\jI(Y): y E Yo} U {qjem+j:j E lot,

where

x= (01(x), ... , Om(X), R*(x) lfIl(X), ..., R*(x) lfIn(X)V,

\jI(Y) = (0,...,0, -lfIl(Y)'''·' -lfIn(y)?

and

ek = (t5 lk ,· .. , t5m + n•k?,
t5ij = Kronecker delta;

Jr(S) = the convex hull of S = !i~ AiSi :

k is a positive integer, Si E S Vi, Ai ~°Vi, itl Ai = 1i;

int Jr(S) = the interior of Jr(S).

2. CHARACTERIZATION

We first prove a Kolmogorov-type characterization theorem.

THEOREM 2. Suppose fE C[X]-.9fL • Then R* = p*/Q* E .9fL is a best
approximation to f iff there is no P= PI 01 + ... +Pm Om E g,
Q = qllfll + ... + qn lfIn E .2 satisfying

(i) sgn(P + R*Q)(x) = sgn(f(x) - R*(x», Vx E X o;

(ii) Q(y) <0, Vy E Yo;
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(iii) iij > 0 if ql = I;

(iv) iij <0 if ql = -1.

Proof (<=) Suppose R * is not a best approximation. Then there is a
better approximation R = PjQ E .9RL • By our assumptions in the previous
section, we have (maxxExL(x»j(minxEx l/II(X» < I; letting a be any number
satisfying (maxxExL(x»j(minxEx l/Il(X» <a < 1, we define 0 = qll/ll + ...
+qnl/lnEo9 by O=Q*-al/l l • Then Q satisfies Q(y)<O VyEYo,

~ >0 if ql = 1, and qj <0 if ql = -1. Now define P =- P-P*,
Q =- Q* - Q + '1Q, where '1 is a positive number. For x E X o, we have

sgn(P +R*Q)(x) = sgn(P - p* +R*(Q* - Q + '10»(x)

= sgn(P - R*Q + '1R*O)(x)

= sgn lQ(x) [ (R(X) - R*(x) + '1 R *~~x~(X») Jl
= sgn [!(X) - R*(x) - (f(x) - R(x» + '1 R*~~x~(X) J.

Now choosing '1 so small that 11l(R*(x) Q(x)jQ(x»! <II!- R* II-II!- R II
Vx E X o, we have

sgn(P+R*Q)(x) = sgn(f(x) - R*(x»

so (i) holds. For y E Yo, we have

Q(y) = Q*(y) - Q(y) + 1l0(y)::;; L(y) - L(y) + '1Q(Y) <0,

so (ii) holds. If ql = 1, we have

iij = qj - qj + '1qj ~ 1 - I + llqj >0,

so (iii) holds. If ql = -1, we have

iij = ql - qj + '1qj ::;; -I - (-I) + '1qj <0,

so (iv) holds.

(=» Suppose there exists PEg, QE 2 satisfying (i)-(iv) above. Let A
be a small positive number. Then

p* +AP p* PQ* +P*Q P+R*Q
Q* _ AQ - Q* = A (Q* _ AQ) Q* = A Q* _ AQ .
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Thus

P*+AP p* P+R*Q
f- Q*-AQ =f- Q* -A Q*-AQ'

and using the arguments of [2, pp. 159, I60J it can be shown that

for all A sufficiently small. It remains only to show that

p* +AP .9i'
Q* -AQ E L

for A sufficiently small.
For all y E Yo, we have

Q*(y) - AQ(y) > Q*(y)::= L(y).

13

Since Yo is compact, there exists' >0 such that Q(y) ~ -, Vy E Yo' Let
Y, ::= {x E X: Q(x) < -'/2}, Y 2 = X - Y,. Then Y 2 is compact, with
Y 2 n Yo = 0. Let f.J::= min{Q*(x) - L(x): x E Y2 } > O. Choose A to satisfy
0< A < f.J/max(I, II QII). Then if x E Y" we have Q*(x) - AQ(X) > Q*(x) ~
L(x); if xEY2 , we have Q*(x)-AQ(x)~L(x)+f.J-AQ(x)~L(x), so
Q*(x) - AQ(X) ~ L(x) Vx E X. Finally, if qJ = 1 we have

qj -Aih= I-AiL < 1,

and if qJ = - 1 we have

so choosing A sufficiently small will insure that IqJ - At]jl ~ 1, j = 1,..., n.
Thus for A sufficiently small we have

p* +AQ
Q* _ AQ E.9i'L and

so p*/Q* is not a best approximation. Q.E.D.

We can now prove a "zero in the convex hull" characterization of best
approximations.

THEOREM 3. Suppose fE C[XJ -.9i'L' Then R* = p*/Q* E .9i'L is a best
approximation to f iff the origin of (m + n)-space lies in the convex hull of S
(where S is the set defined in the Introduction).
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Proof By the theorem on linear inequalities [2, p. 19], 0 E. 2(S) iff the
system of inequalities

(Z, s) > 0, s E S,

is consistent (here ( , ) denotes inner product). But this is true iff 3 a vector
Z = [Zl''''' zm+nV satisfying

a(x)[zIOI(X) + ... +zmOm(x) +R*(x)(zm+ 1 11'1 (x) +... +zm+nll'n(x))]

>0 VxEXo;

Vy E Yo;

if ql = 1;

and

if ql =-1.

Letting ji = Z 101 + ... +Z m Om and Q= Z m+ 1 11'1 +... +Z m+n II'n' we see by
Theorem 2 that this is true iff R* is not a best approximation. Thus
oE 2(S) iff R* is a best approximation. Q.E.D.

We illustrate the application of this theorem with the following example.

EXAMPLE 1. Let X = {O, I}, f(x) = x, g = 110 = the set of all
polynomials of degree ~O, 3=111 , L(x) =:0.1, R*(x)=(Ij11)/(l-0.9x).
We have Xo= {O, l}, Yo = {l}, 10 = {I}, a(O) = -1, a(I) = 1. Thus

OI(X)

a(x) (R*II'I)(x) =a(x) _1_/(1 - 0.9x) ,
11

(R*1I'2)(X) ~/(l-0.9X)
11

so

-1 0 0

S=
1 10

-1
11 11

0
10

-1 0
11
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Solving the linear system

15

-AI + ,12 = 0,

1 10
-11,11 +11,12-,13+,14=0,

10
11,12-,13 =0,

Al + ,12 + ,13 + ,14 = 1

yields the solution Al = 1/3, ,12 = 1/3, ,13 = 10/33, ,14 = 1/33. Since we have
Ai ~ 0 Vi, we have 0 E res), so R* is a best approximation.

We may observe that in this example 0 is a positive convex combination
of exactly m + n + 1 = 4 vectors in S, and the coefficient matrix used is
nonsingular. Thus by Cramer's rule (61 ,62 , 63f E reS) if 161 1, 162 /, 163 / are
sufficiently small, so 0 is actually in the interior of res); this distinction
will be important in the next two sections.

The next example illustrates what can happen if our assumption that
maxxExL(x) <minx EX fl/I(X) is violated.

EXAMPLE 2. Let X= [0, 1], g=IIo, .2=II" L(x):: 1, R*(x)=
1/(1 + 0.5x). We have

and

so 0 E reS) regardless of whether R* is a best approximation to I or not.
Intuitively, the trouble is that we are imposing a double restraint on the
denominator at x = 0 which ties it down completely there.

The next example shows that the standard alternation characterization of
best approximations does not hold in our setting.

EXAMPLE 3. Let X = rO, 3],

I(x) =3.5x,
= 2 + 1.5x,
= 8 - 1.5x,

O~x~ 1,
1~x~ 2,
2 ~x ~ 3,

,,?=IIo, Q=II2, L(x)::0.2, R*(x)=I/(1-0.8x+0.2x2). We have
Xo= {O, 1,3}, Yo = {2}, 10 = {l}, a(O) = -1, a(1) = 1, a(3) = 1. The fact
that R * is a best approximation to f is shown by the equality

640/32/1-2
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Without denominator restrictions we would expect (m - 1) + (n - 1) +
2 - min(m - 1 - degree of P*, n - 1 - degree of Q*) = four alternating
points for f - R*; since there is only one denominator restriction we might
have hoped for three alternating extreme points, but there are only two. It is
tempting to conjecture that denominator constraints act as extreme points
with "sign of error" opposite that of the previous extreme point, but there are
examples which show that there may still be fewer than expected alternating
extreme points. Thus there does not appear to be a simple alternation
theorem in this setting. Some partial results under suitable Haar assumptions
are possible; however, they do not seem to add much insight.

3. UNIQUENESS AND DE LA VALLEE POUSSIN RESULTS

Best approximations from .9fL need not be unique, as shown by the
following example.

EXAMPLE 4. Let X= {O,I}, f(x)=x, .3'=110 , 2=112 , L(x) =: 0.1,
R*(x)=(Ij11)j(I-0.9x). We have Xo={O,I}, Yo={l}, Io={l},
0-(0) = -1, a(I) = 1. Thus

B1(x)

(R*lI!l)(x) _1_/(1 - 0.9x)
11

a(x) =a(x)

(R*lI!2)(X) ~/(1-0.9X)11

(R*lI!3)(X) x
2!- (1-0.9x)

11
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so

-1 0 0

I1 10
-1

11 11
S=

0
10

0

\

- -1
11

0
10

-1 0
11

and R* is shown to be a best approximation by the equality

-1 ° 0 °
1 10

°- -1
1 11 1 11 10 1

3
+- +3"3 +3"33 10

° - -1 0 0
11

°
10

-1 0 0-
11

But R(x) = (1/11)/(1 +q2x + q3X2) is also a best approximation for any q2'
q3 satisfying Iq21 ::::;: 1, Iq31 ::::;: 1, q2 + q3 = -0.9 since Ilf- R II =
1/11=lIf-R*II·

It turns out uniqueness is assured if, unlike the situation in this example, 0
is in the interior of Jr'(S). To prove this, we need the following lemma.

LEMMA 1. Suppose fE C[X] and R* E RL • Suppose go is an arbitrary
compact subset ofX, and S is the S of earlier theorems with Xo replaced by
go' If 0 E intJr'(S), then P == 0, Q == 0 is the only solution in .3', .2 to the
inequalities

(a) a(x)(P +R*Q)(x) ~ 0, Vx Ego;

(b) Q(y)::::;:O, VyE Yo;

(c) ilj ~ 0 if q! = 1;

(d) ilj ::::;:Oifq!=-1.

Proof. Suppose P E.3', QE.2 satisfy (a}-(d). Letting z = [PI ,...,Pm'
ill"'" ilnf, the system (a}-(d) may be rewritten as (z,s) ~ 0 Vs E S. Suppose
that there is a z '* 0 satisfying these inequalities. Since 0 E int Jr'(S), for
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6> °sufficiently small we have -6z E 01"'(8). By Caratheodory's theorem
[2, p. 17] for some integer k~m+n+ 1, 3sl"",SkE8, A!,...,Ak~O with
L:7=IAi =1 such that -6Z =L::=I Ai Si, Thus -o(z,z)=(z,-oz)=
(z, L::=I AiSi) = L:tl Ai(Z, Si) ~ 0, which is contradiction. Thus z = 0, so
P=O, Q=O. Q.E.D.

Although we will not use it in this paper, the converse of this lemma can
also be shown to be true.

We can now prove uniqueness of 0 E into1"'(S).

THEOREM 4. Suppose fE C[X]- gL and R* = P*IQ* E 9fL. If
oE int o1"'(S), then R * is the unique best approximation to f from gL'

Proof By Theorem 3, R * is a best approximation. Suppose
R = PIQ E gL were another best approximation. Let P = P - P*,
Q = Q* - Q. For x E X o' we have

a(x)(P +R*Q)(x) = a(x)(P - R*Q)(x)

= a(x) Q(x)[f(x) - R*(x) - (f(x) - R(x))] ~ 0.

For y E Yo, we have

Q(y) = Q*(y) - Q(y) =L(y) - Q(y) ~ O.

Finally, if q! = 1, we have

ih = q! - qj = 1 - qj ~ 0

and if q! = -1, we have

Thus by Lemma 1, P=O and Q=O. Thus p=p* and Q=Q*, so R* is
unique. Q.E.D.

The next example shows that the converse of this theorem if false.

EXAMPLE 5. Let X = [0, 1], f(x) = 2 - 2x, 9 =.2 = IIo, L(x) == 0.1,
R*(x) == Ill. We have X o= {O, I}, Yo = 0, 10 = (1), S = {[:], [=:J. [~]}.

Here R * is the unique best approximation, but 0 f/:. int o1"'(S).
In general, we always have 0 f/:. int o1"'(S) if R * is a best approximation

with Yo = 0; the reason is that 0 E int o1"'(S) implies that the coefficients of
the best approximation are unique, but Yo = 0 implies that for some a with
o< a < I, (aP*)/(aQ*) is another best approximation in 9fL with different
coefficients.
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The hypotheses of Theorem 4 are actually sufficient to prove strong uni
queness.

THEOREM 5. Suppose R* is a best approximation to fE C[X] with
oE int ¥(S). Then there is a constant y >0 such that for any R E !JilL'
Ilf-RII~ Ilf-R*11 + yliR -R*II·

Proof (sketch). The proof follows the same general lines as the proof of
strong uniqueness in the setting where the denominator is merely required to
be positive [2, p. 165], with P - p* playing the role of P in the standard
proof and Q* - Q playing the role of Q, and Lemma 1 of this paper used in
place of Lemmas 1 and 2 in [2]. The other major change is that the
definition of con p. 166 of [2] is replaced by

c = inf{max[-a(x)(p +R*Q)(x)]:ftE Y', Q E 2, Q(y) ~ 0 Vy E Yo

ijj ~ aif q! = 1, ijj ~ aifq! = -1,

max{IIP +R*QII, IIPII, II Q II} = I};

the extra complication in the last equality of this definition is needed since
otherwise we could have liP+R*QII = 1 with II QII and liPll arbitrarily large.

Q.E.D.

We finish this section with two de la Vallee Poussin estimates, which give
lower bounds on error norms.

THEOREM 6. Suppose fE C[X] - !JilL' R* E!JilL (not necessarily a best
approximation), and %0 -::1= 0 is some compact subset of X. Suppose
oE¥(S), where S is the S of earlier theorems with Xo replaced by %0'
Then inf{lIf- R II: R E !JilL} ~ min{lf(x) - R*(x)/: x E go}'

Proof Without loss of generality, we may assume f(x) -::1= R*(x)
Vx E 2 0 , Suppose the conclusion of the theorem is false. Then j R =
P/QE!JilL with IIf-RII<min{lf(x)-R*(x)l:xE%o}' Let P=.P-P*,
Q =. Q* - Q. Proceeding as in the proof of Theorem 4, we get

(at) a(x)(P+ R*Q)(x) >a Vx E 2 0 ;

(b) Q(y) ~ 0 Vy E Yo;

(c) ijj ~ 0 if q! = 1;

(d) ijj~Oifq!=-l.

Since 0 E ¥(S), Caratheodory's theorem [2, p. 17] implies that for some
integer k ~ m + n + 1, j 51 , ••• , 5k E S, AI'"'' Ak ~ 0 with L:7= 1 Al = 1 such that
L:~= 1 AI 51= O. Thus there are nonnegative induces u, v, w with u + v + w= k
such that L:r= 1 Ala(xt> XI + L:¥= 1 Au+I'l'(YI) + L:i= 1 Au+v+ Iqtem+i{ = 0,
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where xI,...,xuEXo;YI,...,YvEYo; il,...,iwElo and X/=(Ol(x/),...,Om(x/),
R*(x/) l/II(X/), ..., R*(x/) l/In(x/)f. We will next show that

u

I: A/O(X/)(P+R*Q)(x/) ~ O.
/=1

We have

u

I: A/O(X/) O,(x/) = 0
'=1

u v

I: A/O(X/) R*(x/) l/I/x/) = I Au+/l/I/Y/) - Aj
/=1 /=1

where

for i = 1,..., m,

for j = 1,... , n,

=0

So we get

u

I A/O(X/)(P + R*Q)(x/)
/=1

if j = i/ E 10

otherwise.

u [ m n J
= /~I A/O(X/) '~I pJJ/(x/) +R*(x/) j~ iijl/l/x,)

= ,~ p, Ltl A/O(X/) O,(x/) ] +jtl iij [/~ A/O(X/) R*(x/) l/I/x/)]

=0 +jtl iij Ltl Au+/l/Ij(Y/) - Aj ]

v [ n J n= /~I Au+/ j~1 iijl/l/Y,) - j~ Aiij

v w

= I: Au+/Q(y/) - I: Au+v+/qtii'l~0
/=1 /=1

by properties (b)-(d), as claimed. But by properties (a'), this implies
Al = ... = Au = O. But this in turn implies that 0 E cfF(S'), where S' =
{'lI(Y): Y E Yo} U {qJem+j:j E lot. Thus, if X o= {x E X: I/(x) - R*(x)1 =
II/-R*II} as before, we have oEcfF({o(x)x:xEXo}US'). Thus, by
Theorem 3, R* is a best approximation to f Thus inf{1I1- R II: R E .9P'L} =
III- R* II = maxXEX Iflx) - R*(x)1 ~ min{l/(x) - R*(x)l: x E Xo}, contra-
dicting the assumption that the conclusion of the theorem is false. Q.E.D.
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If we assume that 0 E int 2(S), we can prove the following stronger
result.

THEOREM 7. Suppose fE C[X], R* =P*/Q* E 9lL (not necessarily a
best approximation), and go =1= 0 is some compact subset of X. Suppose
oE int2(S), where S is the S of earlier theorems with X o rep/aced
by go' Then for every R = P/Q E 9lL with R i= R* we have
max{lf(x) - R(x)l: x Ego} > min {If(x) - R*(x)l: x Ego}'

Proof Suppose the conclusion is false. Let P == P - P*, Q == Q* - Q.
Then ?JRE91L with Ri=R* and max{lf(x)-R(x)l:xEgo}~

min{lf(x) - R*(x)l: x E go}' Proceeding as in the proof of Theorem 4, we
get

(a") a(x)(P+ R*Q)(x);;t 0, Vx Ego;

(b) Q(y) ~ 0, Vy E Yo;

(c) ih ;;t°if qj = 1;

(d) ih <, °if qj = -1.

Thus Lemma 1 implies P == 0, Q== 0. Thus R == R *, contrary to assumption.
Q.E.D.

We observe that Example 4 with X replaced by {O, 0.1,1} and Xo = {O, I}
shows that the conclusion of the theorem may fail if 0 E int2(S).

4. COMPUTATION OF BEST ApPROXIMATIONS

The differential correction algorithm introduced by Cheney and Loeb [3]
and discussed further by Barrodale et al. [1] can be modified to compute
approximations from 9lL by inserting extra constraints to force Q(x);;t L(x).
We have

ALGORITHM (Restricted-denominator differential correction-RDDC).

(i) Choose Po/Qo E 9lL ;

(ii) Having found Pk/Qk E 9lL with IIf - Rkll =Ak, choose Pk+ l'

Qk+ I as a solution to the problem

minimize:

subjec to:

If(x) Q(x) - P(x)l- AkQ(x)max -=--..:.....:..---"-~--'--------'.:....:...-'----

xeX Qk(X)

Iqjl~l, j=I, ...,n, and Q(x);;tL(x), VxEX;

(iii) continue until some stopping criterion is met.
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One common stopping criterion is to stop when (Llk-Llk+I)ILl k< e for
some prescribed e > 0, selecting R k + I as the approximation returned by the
algorithm if Llk+I <Ll k, and selecting Rk otherwise. A convenient way of
choosing PoIQo, which often is considerably more efficient than making
some arbitrary choice such as PolQo == 111 (see Lee and Roberts [5] for
numerical evidence in the unrestricted-denominator case), is to minimize
maxxex I/(x) Q(x) - P(x)1 subject to Q(x) ~ L(x), Vx E X and Iqjl <1 for
j= 1,..., n.

Using the techniques of Barrodale et al. [1], we prove

THEOREM 8. The RDDC algorithm converges monotonically and at least
linearly.

Proof. Let M = maxxex L;~ I l'IIj(x)! (thus II QII <M for all QE .9 with
Iqj I<1). Suppose R k is not a best approximation. Let R* be a best approx
imation with LI* = III- R* II. Let ~ = minxex L(x) >0. We have

I/(x) Qk+ I(X) - Pk+ l(x)l- LlkQk+ I(X)max -'-'-...:.....:..--:...::~.:-::...--::...:-=:-..:......:...:....-.::...:;.::...:-~

xex Qk(X)

--' I/(x) Q*(X) - P*(x)l- Ll kQ*(x)"" max .e..:.-.:-::...-=--:.....::--_...:.....:.:...---..::-=-....:.....:....
xex Qk(X)

= max \ [1/(x) - R*(x)l- Lld . QQ*«x))/ < [LI* - LId .~ <0,
xeX { k X \ M

.'. VxEX,

[I/(X) - Pk+I(X) 1- Ll k] . Qk+I(X) <[.1* - Ll k] .~ <0,
Qk+I(X) Qk(X) M

... Vx EX, I/(X) - Pk+I(X) 1- Ll k<0,
Qk+I(X)

so the convergence is monotonic.

Vx E X, we have

!

/(X) - Pk+I(X) 1_ Llk< [LI* - Ad . ~. Qk(X)
Qk+I(X) M Qk+I(X)

< [.1* -Ll k ] • (~. ~),

()2
.' . Ll k +1- Ll k < [.1* - Ll k ] • M 2 '
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. * ( 0
2

) ( *).. Ak+I- A :::;; 1- M 2 Ak-A ,

... Ak converges at least linearly to A*.
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Q.E.D.

We observe that this theorem is stronger than the corresponding theorem
in the unrestricted-denominator case [1, Theorems 1, 2] in that it gives infor
mation on the rate of convergence, and finiteness of X is not required to
prove convergence. Finiteness of X is required, however, in order to run the
algorithm in the usual way.

The following lemma was proved and used by Barrodale et al. [1] for the
case .9 = IIm _ 1 and .2 = IIn -I' The Haar subspace assumption of our
lemma is equivalent to their assumption that min(m - 1 - degree of P*,
n - 1 - degree of Q*) = 0, with p* and Q* having no common nonconstant
factors in their setting.

LEMMA 2. Suppose X contains at least m + n + 1 distinct points and
R* =P*/Q* E S¥o == {P/Q: P=PIOI + ... +PmOm E.9, Q = qllfll + ... +
qnlfln E.2, Q > 0 on X, maxI <;;j<;;n Iqjl = 1}. Suppose that the space spanned
by {Op... , Om' R*IfII''''' R*lfIn} is a Haar subspace of dimension m + n - 1;
that is, the s/?ace has dimension m + n - 1, and no nontrivial element of it
has more than m + n - 2 distinct zeros in X. Then 3 () > 0 such that for all
R = P/Q E S¥o we have II Q - Q* II:::;; () IIR - R* II·

Proof Dua and Loeb [4] prove this lemma in the case where X = [0, 1],
/?=IIm_ p and .2=IIn _ p but their proof requires these extra conditions
only in proving that if Q ~ 0 on X and P == R*Q on X, then P == p* on X
and Q == Q* on X. This fact, however, follows from an argument of the type
given by Cheney [2, p. 165]. Q.E.D.

We can now prove quadratic convergence of the RDDC in some cir
cumstances.

THEOREM 9. Suppose X contains at least m + n + 1 distinct points.
R* = p*/Q* E S¥L is a best approximation to fE C[X] - S¥L' and the space
spanned by {81''''' 8m, R*lfIp..., R*lfIn} is a Haar subspace of dimension
m + n - 1. Suppose that either of the following two conditions holds:

(A) Yo=00r

(B) 0 E inL:r(S).

Then the rate of convergence of the restricted-denominator differential
correction algorithm is at least quadratic.



24 KAUFMAN AND TAYLOR

Proof If some R k is a best approximation the conclusion of the theorem
is true, so we assume this is not the case.

Then the approximations produced by the RDDC algorithm (except
possibly Po/Qo) satisfy the normalization maxl<j<;n Iqjl = 1, since otherwise
the (negative) minimum computed in step (ii) of the algorithm could be
decreased by renormalization. Since we may also assume R* satisfies this
normalization, the hypotheses of Lemma 2 hold for R* and R k , k ~ 1. We
now claim that if condition (A) holds, then R* is a best approximation to 1
from ~o' To see this, we note that by Theorem 3 we have
oE 2({a(x) x: x E Xol U {q!em+j:j E I o}) (see Introduction). If there were
R = P/Q E ~o satisfying 11/- R II < 11/- R* II, letting l(x):=
imin(minxExL(x), minxEx Q(x)) we have R* E ~l and R E ~l' with
Q* >l and Q >l. But the convex hull statement above and Theorem 3 now
imply that R* is a best approximation from ~l' which is a contradiction.
Thus, if condition (A) holds, the strong uniqueness of R* holds by a theorem
in Cheney [2, p. 165], while if condition (B) holds, strong uniqueness holds
by Theorem 5. With the strong uniqueness of R* and the conclusion of
Lemma 2 available, the rest of the proof is as given by Barrodale et ai. [1,
Theorem 3]. Q.E.D.

As noted earlier, condition (A) and (B) of this theorem are mutually
exclusive; Example 4 shows that they are not exhaustive. Under the
hypotheses of Theorem 9 the absolute values of the differences of the coef
ficients of R k and R * can be shown to be bounded by sequences which
converge quadratically to zero.

It is sometimes desirable to ignore the function 1 at some points of X, but
still apply the denominator restrictions on all of X; the theory of this paper
goes through unchanged if the subset of X on which1 is to be approximated
is compact. This situation is illustrated in the following example, where 1 is
the desired magnitude squared response of a digital filter, and we do not wish
to approximate1 in the "transition band" (0.1, 0.11).

EXAMPLE 6. Let X = {O, 0.005, 0.01, 0.015,... , 0.5},

I(x) = 1, 1~ x~ 0.1,

= undefined, 0.1 < x < 0.11,

=0.14, 0.11 ~x~0.5,

5'=2= ltl a/cOS(2lr(i-l)X)(,

L (x) := 0.125. Applying the RDDC algorithm on a CDC CYBER 172,
which has roughly 14 digits of accuracy, we get (rounded to five places)
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R*(x) = (0.34408 + 0.35185 cos 2nx + 0.08270 cos 4nx + 0.15552 cos 6nx

+ 0.31629 cos 8nx + 0.23541 cos 1Onx)j(I.OOOOO

+ 0.27473 cos 2nx - 0.56073 cos 4nx - 0.04879 cos 6nx

+ 0.68555 cos 8nx + 0.37588 cos 1Onx),

with .1* = 0.13945, X o = {O+, 0.085-, 0.1 +,0.11-,0.125+,0.215-,0.34+'
0.345+,0.405-,0.41-, 0.5+} (where the sign indicates the sign of/-R*),
Yo = {0.105}, 10 = {l}. Nine iterations were required, with the quantities
.1 k -.1* (for k = 0,1,... ,8) being approximately 1 X 10- 1

, 8 X 10- 2
,

2 X 10- 2
, 1 X 10- 2,4 X 104

, 1 X 10- 6,8 X 10- 12,2 X 10- 14, 8 X 10- 15
; this

sequence indicates the eventual quadratic nature of the convergence, up to
machine accuracy.

We finally remark that the theory of this paper can also be extended to
include restricted range conditions and a positive continuous multiplicative
weight function w; that is, we may further require the functions R in gpL to
satisfy R ~ u on XI and R ~ I on X 2 , where u and I are given continuous
functions defined on compact subsets XI and X 2 of X, respectively, and we
wish to minimize II w . (f- R)II instead of III- R II. The set S must be
expanded to include the vectors of the form 8(x) i (x E Zo), where
Zo = {x E X: R*(x) = u(x) or R*(x) = l(x)} and

8(x) =-1

= 1

if R*(x)=u(x)

if R*(x) = l(x).

In this setting, the assumption maxXEX L(x) < minxEx 'III(X) must be replaced
by the assumption that there exists a member of gpL satisfying all the
restrictions (denominator and restricted range) strictly. The restrictions
P ~ Q . u on XI and P ~ Q . Ion XI must be added to the RDDC algorithm,
and in the expression to be minimized in steps (i) and (ii) P(x) must be
replaced by w(x) P(x). The results of this paper still hold essentially as stated
(with a few minor changes in the proofs) except for Theorems 2 and 9 and
Lemma 1; in Theorem 2 we must add the condition sgn(p +R*Q)(x) = 8(x)
Vx E Zo; in Lemma 1 we must add the condition 8(x)(P+R*Q) ~ 0
Vx E Zo; and in Theorem 9 we must add to condition (A) either Zo = 0, or
I~ u on XI and/~ Ion X 2 • For numerical examples in this extended setting,
see McCallig [6].
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